First order structured perturbation theory for multiple zero eigenvalues of skew-adjoint matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation of Multiple Eigenvalues of Hermitian Matrices

This paper is concerned with the perturbation of a multiple eigenvalue μ of the Hermitian matrix A = diag(μI, A22) when it undergoes an off-diagonal Email addresses: [email protected] (Ren-Cang Li), [email protected] (Yuji Nakatsukasa), [email protected] (Ninoslav Truhar), [email protected] (Wei-guo Wang) Supported in part by National Science Foundation Grants DMS-0810506 and DMS1115...

متن کامل

Structured perturbation for eigenvalues of symplectic matrices: a multiplicative approach

Given an eigenvalue of a symplectic matrix, we analyze its change under small structure-preserving perturbations, i.e., perturbations which maintain the symplectic nature of the matrix. Modelling such perturbations multiplicatively allows us to make use of the first order multiplicative perturbation theory developed in [2] via Newton diagram techniques. This leads to both leading exponents and ...

متن کامل

Second Order Perturbation Theory for Embedded Eigenvalues

We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonia...

متن کامل

Constructive Perturbation Theory for Matrices with Degenerate Eigenvalues

Abstract. Let A (ε) be an analytic square matrix and λ0 an eigenvalue of A (0) of multiplicity m ≥ 1. Then under the generic condition, ∂ ∂ε det (λI −A (ε)) |(ε,λ)=(0,λ0) 6= 0, we prove that the Jordan normal form of A (0) corresponding to the eigenvalue λ0 consists of a single m × m Jordan block, the perturbed eigenvalues near λ0 and their eigenvectors can be represented by a single convergent...

متن کامل

The Asymptotic Eigenvalues of First-Order Spectral Differentiation Matrices

We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials N P ( , ) , , 1 > − α β α β are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.05.025